TPC Distortions & Calibrations

estimated magnitudes and our ability to correct

STAR TPC Review BNL, June 4-5, 2009

Outline

- Overview of the distortions
- Goals / physics requirements
- Corrections (calibrations)
 - Techniques
 - High luminosity challenges
- Past results
- Future prospects
- Summary

Distortions

- EM fields: non-uniformities are a reality
 - B field: very small static deviations, mapped, done
 - E field: surface & volume issues, static & volatile
 - The big three: (1) shorted field cage rings,
 (2) primary space charge, (3) gated grid ion leakage
- Electrostatics is known physics
 - Requirements: (1) model of the distortion,
 (2) measures/rulers (e.g. surveys, residuals)
 which keep pace with volatility

Field Cage Electrical Shorts

- Potential stepped from cathode to anode
- "Stripes" express potential inside the chamber
- Contaminants (dirt) can short the stripes

Field Cage Electrical Shorts

- Shorts have been a problem for several years
 - Some fixed
 - Some not understood (e.g. partial resistor)
- Worst threat comes from volatile shorting
 - Not a problem presently
- Very unlikely a high luminosity issue
 - Unknown whether its an aging issue

SpaceCharge: model of charge

HIJET model of "event shape" for 200 GeV AuAu collisions matches radial distribution of zerobias data well for much of the runs.

SpaceCharge: model of charge

HIJET model of "event shape" for 200 GeV AuAu collisions matches radial distribution of zerobias data well for much of the runs.

SpaceCharge effect on sDCA

- All tracks go the same direction
 (pos. or neg.)
- Track charge independence
- Field dependence

sDCA = signed distance of closest approach

SpaceCharge effect on sDCA

TPC GridLeak distortions

Electrons leak in, ions leak out.

TPC GridLeak distortions

- Ratio of leakage charge to space charge approximately constant (over several years & collision species!) [Fortune 1]
- Smaller leaks have been spotted (more with age?)
 - Consistent with single Gating Grid wires at floating voltage
 - Reversing polarity of GG wires closes the leak [Fortune 2]

Sectors with more than one have had the same polarity wires missing [Fortune 3]

Design specs & Physics regs

- Momentum Resolution:
 - \circ Soft physics (TPC-only): ΔP/P @ 1.5 GeV/c ≤ 2%
 - Hard physics (TPC+vertex): Δ P/P @ 10 GeV/c ≤ 5%
 - Implied sagitta & hit resolutions:
 - \circ CDR (Not-final design): Δ (sagitta) ≤ 250 μm, Δ (hit)_{rφ} ≤ 570 μm
 - Physics needs
 - \circ Δ(sagitta) \leq 400 [300] µm (soft [hard]), Δ(hit)_{rφ} \leq 700 µm

Design specs & Physics reqs

- Momentum Biases:
 - A big concern for hard physics
 - Biases tend to grow as pT²
 - Biases tend to be opposite for -/+

- Pointing Resolution & Bias:
 - CDR: topological strange decays w/ Si inner tracking
 - Physics needs:
 - ~5 mm pointing at vertex for strangeness w/o Si
 - ~1 mm pointing at Si to enable heavy flavor topology
 - Biases directly degrade resolution

Projected pointing errors

- pp500 is worst!
 - Run 9 has been a valuable test (over 4cm!) —
- Intermediate
 ions (CuCu)
 perhaps worse
 than heavy ions
 (AuAu, UU?)

Calibration first steps

- Non-volatile calibrations must be completed first (e.g. internal alignment, and w.r.t. B field)
 - Necessitates low luminosity data
 - RHIC did not deliver this during pp500 this year.....the future?
- Field cage currents measure electrical shorts
- sDCA and residuals tell us about the SpaceCharge and GridLeak ionization (via model)
 - Systematics must be understood (e.g. pile-up)

Ionization: scalers

- Inear with scaler measures of luminosity
- Occasional outliers
- Now using
 1-second scaler
 averages, and
 multiple scalers

Luminosity = function(scalers)

STAR records scaler rates on Zero Degree Calorimeters (ZDCs) and Beam-Beam Counters (BBCs)

On-the-fly calibration successes

- Fluctuationson ~secondtime scale
- High-rate
 DAQ allows
 calibration
 on ~second
 time scale in
 A+A data

On-the-fly calibration successes

- Fluctuationson ~secondtime scale
- High-rate
 DAQ allows
 calibration
 on ~second
 time scale in
 A+A data

Distortion Corrections (pre-Run9)

Distortion	Approximate Scale [microns]	Correction Scale [microns]
Twist (E-B alignment)	800	50
IFC Shift	100	50
Clock (East-West rotation)	800	50
Padrow 13	400	50
B field shape	800	50
Shorted Ring	2000 ^A	100 ^B
Space Charge	up to 5000 ^C	100-200 ^D
Grid Leak	up to 2500 ^C	100-200 ^D
Unknown	100??? 300???	100??? 300???

Overall contribution to δp_t/p_t ~ ¹/₄-³/₄% * p_t for TPC-only tracks (primary vtx, silicon help)

A. Larger (up to 5000) without compensating resistor.

B. Worse for continuously varying short.

C. Luminosity dependent

D. Dataset dependent

CDR design was ~1%*pt

Performance: specs

	Design	Results
Momentum Resolution: Soft physics: ΔP/P @ 1.5 GeV/c	2%	~2%
Hard physics: ΔP/P @ 10 GeV/c	5 %	5-6%
Sagitta Resolution: Soft physics: Δ(sagitta)	400	600*
Hard physics: △ (sagitta)	300	400*
Hit Resolution: Δ(hit) _{rφ}	700	300-550**
Topological reconstruction of weak decays: strange decays	via silicon	TPC alone ~2-3 mm resolution near vertex
heavy quark decays	_	Possibly via silicon ~1 mm hit-matching resolution

^{*} averaged over whole TPC ** for 0° crossing angle (up to 1.5mm for 30°), drift length [diffusion] dependent, slightly better/worse for inner/outer pads

Performance: physics

- Flat (as expected) anti-X / X ratios at high pT (e.g. π-/π+, e-/e+)
- Topological strange decays even w/o Si (e.g. Xi mass)
- Efficient matching to Si detectors enabling heavy flavor decays (e.g. D0 mass)

The Future: higher luminosities

- Tracking across TPC now fails w/o some GridLeak correction
- How close is model to reality?
 - Differences will amplify with increasing luminosity
 - Biases hurt physics most!
 - How will the backgrounds change/grow/quell?
 - Shielding has helped
- Run 9 pp500 has twice the SpaceCharge as ever before
 - …no major surprises…yet…

The Future: calibrations

- Higher DAQ rates
 - Increasing gating grid rates produced no notable change in SpaceCharge-like distortions(!)
 - Higher event rates benefit on-the-fly calibration approach
- Other techniques for SpaceCharge measures
 - Fixed detectors (GMT upgrade proposal)
 - Use identified pileup hits in the data (see Joe's talk)
- Feedback from users on margins
 - Margin for degraded pT resolution (less than $\sqrt{2}$)
 - No margin for pT biases
 - Little-to-no margin on pointing resolution/biases w/SSD

Reasons for faith

So far, we have built the tools we need and have delivered physics beyond design goals

The future:

- Preliminary efforts for pp500 appear successful, but we expect even higher luminosities and things could get worse for us
- We have some margin for further resolution errors, but even small biases are dangerous

